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A Full Custom, High Speed Floating Point Adder 

J.R. Hoff, G.W. Foster 
Fermi National Accelerator Laboratory’ 

Abstract 

This document de-scribes the concept, design and 
Implementation of a high-speed floating point adder for use by 
the Solenoidal Detector Collaboration (SDC) at the Super- 
conducting Super Collider (SSC). The adder uses a unique 
floating point format, described herein, and is implemented 
using Orbit Semiconductor’s 1.2um n-well process. 
Simulations indicate that the device will operate at 63 MHz. 

I. INTRODUCTION 

One of the primary advantages of the proposed SDC 
Calotimeter is the digitization of incoming signals at each 
beam-crossing. This allows for a wide variety of data 
manipulations in the digital domain rather than error-prone 
attempts of the same in the analog domain. Furthermore, this 
mampulation can be performed in custom designed digital 
electronics at high data rates 

One of the aforementioned manipulations is to sum the 
digitized outputs of Twenty-five Thousand photomultiplier 
tubes from the SDC Calorimeter. It is for this and for several 
other similar potential applications that the AdderChip was 
developed. 

The Add&hip is a full custom IC capable of adding 
together two floating point numbers each with 8 bit mantissa 
and 4 bit exponents. Both the Exponents and the Mantissa can 
be assumed positive in this particular design The AdderChips 
would ix arranged in a multi-tiered fashion with sums of 
previous Addertips feeding the inputs of other AdderChips 
producing what is called the AdderTree with the ultimate 
output being the sum of many inputs. 

What follows will be a short description of the Floating 
Point format used followed by the design description. Finally, 
an Appendix is included which contains the schematic and full 
custom designs of all of the circuits and subzirctits used in the 
chip. 

II. THE FLOATING POINT FORMAT 

The AdderCXip’s floating point format is roughly based on 
the standard scientific format. IXat is to say, 

N = (Mantissa) x 2@pnult) (1) 

Thus, if the h&ntissa were 10100000, and the Exponent were 
COII,, then N would be equal to lOl@XXHXx& or 1280. 

Also, it is assumed that the Mantissa has been shifted to 
the left or to the tight and the Exponent increased or decreased 
commensurately in order to place a 1 in the most significant bit 
of the Mantissa 

This format works well for a large number of situations, 
but improvements csn be made. First of all, if it is known that 
the most significant bit of the Mantissa must Lx a I, then it is 
possible to assume the existence of that bit and gain an extra 
bit of accuracy. In other words if the real mantissa were 
110010101,, it could be stored as 10010101, under the 
assumption that 1m must be added to 10010101, in 
order for the results to be correct. This is lolown as a Hidden 
Bit. 

Secondly, and more critically, the requirement that there 
be a leading 1 (Hidden or present) eliminates the possibility of 
a true 0. and, since the smallest possible Exponent in this 
design is 0 (all Exponents are assumed non-negative), this 
means that the smallest possible number would be 128 (or 256 
if Hidden Bits were used). 

The solution is to use a Conditional Hidden Bit format. A 
true Zero requires both a Zero mantissa and a Zero exponent, 
so. in the Conditional Hidden Bit format, Hidden Bits are 
always assumed to be present unless the Exponent is Zero. If 
the Expcnent is Zero, then the Mantissa contains M Hidden 
Bits. 

N = Mantissa (if Exponent = 0) (2) 

N = ((Mantissa+256) x 2~~“““‘)) (if Exponent > 0), (3) 

i. Work supported by U.S. Depmnent of Energy under contract 
No. DE-ACOZ-76CHMOCO. 

This format yields errors ranging from as little as I part is 511 
to as great as 1 part in 255 and is exact for counts less than 5 12. 



By way of comptison, standard scientific format yields errors 
of 1 part in 255 and is incapable of representing counts less 
than 128. Most importantly, it yields 24 bits of Dynamic Range 
with 8 to 9 bits of accuracy 

III. THE DESIGN 

The AdderChip was required to add two 12 bit floating 
pomt numbers using a two-staged pipeline operating at 
approximately 63MHz. The tirst task was to determine what 
functions went into each pipeline stage. In the addition of two 
floating point numbers (see Figure l), the exponents must be 
compared to each other, the Mantissa must be shuffled relative 
to one another as dictated by the comparison of Exponents, the 
Mantissa must then be added, and if Mantissa carries out, then 
the larger of the two Exponents must be increased by one and 
the Mantissa Sum must be left shifted. These steps are, for 
smlplicity sake, referred to as Exponent Comparison, the 
Mantissa Shuffle, the Mantissa Addition, and the 
Renommlization. 
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Fig. 1 Tim Addsrolip Flow Diagram 

The use of Conditional Hidden Bits adds complexity to the 
design, but it does not change the basic data flow presented 
above. 

At 63MHz, each Tick has approximately 1611s to perform 
its task. Since Exponent Comparison, Mantissa Shut%. 
Mantissa Addition and Renormalization must occur in that 
order. the question of how to subdivide the Addition Flow into 
the First and Second Ticks reduces to how much of the 
Addition Flow can be completed in the first 16~ Whatever is 
left over must be. completed in the Second Tick. Therefore, it 
was rather simple to determine that the Exponent Comparison 

and Mantissa Shuffle would be accomplished in the FirstlIck 
and Mantissa Addition and Renormalization would be 
accomplished in the SecondTick. 

IV. THE FIRST TICK 

A. Exponent Comparison 

In this most recent AdderChip design. a means of parallel 
Exponent Comparison and Mantissa Sh&le was attempted In 
this scheme, the initial stages of the Shtie are begun BS soon 
as pamal information on the Exponent Comparison becomes 
available. 

It is well known that in the Binary system. the magnitude 
of a given number is represented as follows: 

,v2 = BNZ~+B,_,2~-~+...+B,23+Bz2~+B,2’+B,2~ (4) 

where each 8, is either a Zero or a One. For the most recent 
version of the AdderChip, a new numbering system has been 
mvented which has been called, for lack of a better term, 
Urinary Magnitudes in this system are expressed in a similar 
fashion 

iTrin = Bhr2~+BN-,2~-~+...+B~23+8*2~+B12’+802 (5) 

However, in the Trinaty system, 

q= [o 1 -g 

This permits the following representations. in Trinxy, 

(6) 

1101-0111 = lO(-1)O = 6,0 (7) 

To apply this to a four stage Mantissa ShuftIe circuit, 

* a) if Ex = 1, then right shift the mantissa of the 
smaller exponent 

* b) if B z = 0, then do not shift either mantissa 

* c) if Bx = -1, then left shift the mantissa of the 
smaller exponent. 

The significance of the Trinary Numbering System is that 
if it is known which Exponent is larger, then it is possible to do 
a all-bits parallel comparison of the two Exponents. No 
carrying or borrowing is necessary for subtractions, and thus 
much time is saved. 

Fiy, if Exponent A is equal to Exponent B, then neither 
Mantissa should be sho&d This is, of course, obvious. but 
important nonetheless. 

As was stated earlier, there still is no n’priori knowledge 
about the relative magnitudes of the two Exponents. However, 
neither Mantissa gets shuffled eifher when Exponent A is 
Larger than Exponent B and Bit N of Exponent A equals Bit N 
of Exponent B or when Exponent A is equal to Exponent B. 
So. from a Logic Design standpoint, the two states are 



equivalent. Therefore, a simple scan from the Most Significant 
Bits of the two Exponenu to the Least Sigticant bits of the 
two Exponents will reveal the larger of the two numbers at the 
first Bit Pair that do not match Whichever Exponent has a One 
in the same Bit Iccation as the Most Significant Zero of the 
other Exponent is the larger number. All Bits of greater 
significance than this Bit simply leave both Mantissas 
unshuftled up to that point, All Bits of less significance than 
this Bit are made aware of the relative magnitudes of the two 
numbers. 

In simulation, the worst case occurred when one Exponent 
was equal to lCEOz and the other Exponent was equal to 011 I,. 
This was due to the fact that the “who’s greater” signals needed 
to propagate from the Most Significant Bit to the Least 
Significant Bit, and change every result from “I’m Bigger” and 
“Don’t Shift” to “He’s Bigger” and “Shift Up”. 

B.TheMantissaShuflle 

As indicated in the previous subsection. the Mantissa 
Shuffle is a four sectioned design in which each of the four 
secttons are wtually identical. In effect, each section is a 
three-to-one multiplexor which accepts a binary number as its 
input and shifts it up, down or not at all depending on the 
output of the appropriate Exponent Comparison Bit. The fact 
that ShiftUp, ShiftDown, and DontSbift are designed to be 
mutually exclusive in all cases makes the Multiplexor easier to 
design. All that is really needed is a two level and-or scheme. 

Barelandthecanylnputto~sbitisal.AorBares~dto 
propagate their carry input into the next bit. 

The adder complexity can be reduced if two functions are 
defined based on the aforemeotioned two possibilities. The 
Carry Generate function is defined to be 

4, = AiAn. 

The Carry Propagate function is defined to be 

(10) 

pi = Aie3B. 

Thus, the Sum equation is redefined to be 

(11) 

pi @ Carryi _ I = Sum, 

and the Carry equation is redefmed to be 

(12) 

gi ” (pi h carryi- ,) = carryi (13) 

The goal of Binary Carry Lookahead is to provide a 
regular (i.e.repeatable and easily VLSI designed) means of 
generating sums in a fashion such that the total propagation 
delay is sub-linear. Specifically, the total propagatim delay 
mcreases logarithmically. 

The reduction in delay is accomplished by splitting apart 
the carry propagation circuitry so that as much as possible 
occurs m parallel. Let’s assume for the moment that there is a 
4-bit adder that is to be used exclusively as an adder and that 
no preceding adder stage is feeding its CarryIn In other words. 
Ci, is always 0. Then, 

V. THE SECOND TICK COUfo = go (14) 

The SecondTick accepts as its inputs the Shuffled c,Jq = 81 VP,8” (15) 
Mantissas and the Larger Exponent. It performs the Mantissa 
Addition and then the Renormalization. Its output is a twelve COUfz = g2vp2cg, vp,goj (16) 
bit floating point number in the same ConditionaJ Hidden Bit 
format as the two inputs. cou*3 = g,“P,(f*vP~(g, VP,&Q) (17) 

A. The Mantissa Addition 
A pattern begins to emerge here, and it is exploited by the 

BCLA. For example, 

The Mantissa Addition is accomplished though a nine bit GOI 
Binary Carry Lookahead Adder (BCLA). 

It is it is well known that 

C% = 82VP2 (8, VPl&Q (18) 

Ai @ 8; C3 Carry;-, = SW,,; (8) G23 GOI 
Furthermore, coq I- (g3”P,s-,) v (P,P*) - (1% (‘7, VP,&)) 

,(A,r.L$) ” W;“Cnq_,) A (EihC~rryi-i) = Carry; (9) 

In other words. there would be a carry into the next more 
p23 

significant bit addition if either bit A and bit B were 1 or either 
Thus, if we define two equations, 

bit A were a 1 and there was a carry into this bit addition or B 
were 1 and there was a carry into this addition In the design of cry = gy”pYgx 

adders, these two possibilities under which there is a carry into and, 
the next bit have special names. When both bit A and bit B are 
1, they are said to generate there own carry. When either A or P<? = P,hPy 

(20) 

(21) 



Then the caKyont equations become 

couto = go 

COJJll = 6-1 VP1 (b-“) = GO, 

C+ = &VP&, = ‘& 

Cout3 = GZ3 vP~~G,,~ = GOlU 

and the Sum equations become 

(22) 

03) 

(24) 

(25) 

Sumi - ~i~G((i-~)(i-z~...~o)j (26) 

Brent and Kung define an operator, “0”. which replaces 
the G and P equations above 

.(g,p)0W,p’) = (8V (PAg’)rF~F’) (27) 

This is no new information, it is simply presented so that the 
reader can better understand the next figure. It is this format 
that realizes the goals of the BCLA. First, it is regular. Only 
two subcircuits are needed - gen to generate pi and gi from Ai 
and Bi, the incoming numbers to be added. and 0 to generate 
Ps and Gs from p and g. Second. it has a logarithmic time 
increase with the number of gates. This is easily seen from the 
figure because Cow0 passes through 0 gates (after p and g are 
generated) whereas Coutl passes through 1 gate and Cout2 and 
Cout3 pass through 2 apiece. The following figures will 
hopefully clarify any remaining questions about BCLA theory. 

Fig. 2 .Bhry cmy Loo*ud GaaMflO” 

The various subcircuits were implemented and replicated. The 
resulting Binary Carry Lookahead Adder adds the Nine Bit 
Mantissas in approximately 6-811.. 

B. Renormalization 

Essentially, if there is a carry out from the Mantissa 
Addition. then the resulting Mantissa needs to be right shifted 
one. place and the Exponent needs to be increased by one. The 
shifting of the Mantissa is quite simple. Internally, the adder is 
nine bits wide. If there is a Carry Out, the Upper 8 Bits are the 
proper output. If there is no Cany Out. the Lower 8 Bits are the 

proper output. In the case of the Exponent renormalization. 
however, waiting for the Carry Out to determine whether or not 
to Add a I to the Exponent would take too much time. Thus. 
while the Mantissas are being added, a One is added to the 
Exponent, and both the original Exponent and the increased 
Exponent are held awaiting the Cany Out. 

VI. SUPPORT CLRCUITRY 

The AdderChip used straight forward Master-Slave flip- 
flops for the register stages. They have no preset or clear 
capabilities, so the output of the chip for the first two clock 
ticks might be meaningless gibberish. 

The Clock circuitry was drastically altered for this design. 
In previous versions, large clock Buffers distributed the signal 
around, but in this version, a Clock Tree distributes the signal 
in an evenly delayed fashion. Two extra pins were added to the 
design. ClockDelayed and ClockUndelayed, to show the delay 
from the beginning of the Tree to its furthest branches. 

Finally. several registers were tapped off of the signals 
between the FirstTick and the Second Tick to allow for greater 
visibility of the internal operations. 

VII. FABRICATION AND RESULTS 

The AdderChip was fabricated in a 1.2~ n-well process. 
Testing thus far indicates propzx functionality in both fall- 
through (no clocks necessary, registers transparent) and 
clocked modes. 

A problem has been discovered with certain sequences of 
numbers. This is due to the propagating nature of the Exponent 
Comparison. A new approach simular in Theory, but slightly 
different in approach has been proposed to alleviate this 
problem. A new version with this new Exponent Comparison 
is forthcoming. 

Testing of the AdderChip continues both at Fermilab and 
at the Superconducting Super Collider in Texas. 
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